Efficient Quantum Pseudorandomness.

نویسندگان

  • Fernando G S L Brandão
  • Aram W Harrow
  • Michał Horodecki
چکیده

Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudorandom States, Non-Cloning Theorems and Quantum Money

We propose the concept of pseudorandom states and study their constructions, properties, and applications. Under the assumption that quantum-secure one-way functions exist, we present concrete and efficient constructions of pseudorandom states. The non-cloning theorem plays a central role in our study—it motivates the proper definition and characterizes one of the important properties of pseudo...

متن کامل

Approximate Randomization of Quantum States With Fewer Bits of Key

Randomization of quantum states is the quantum analogue of the classical one-time pad. We present an improved, efficient construction of an approximately randomizing map that uses O(d/ ) Pauli operators to map any d-dimensional state to a state that is within trace distance of the completely mixed state. Our bound is a log d factor smaller than that of Hayden, Leung, Shor, and Winter [7], and A...

متن کامل

Pseudorandom Functions and Lattices

We give direct constructions of pseudorandom function (PRF) families based on conjectured hard lattice problems and learning problems. Our constructions are asymptotically efficient and highly parallelizable in a practical sense, i.e., they can be computed by simple, relatively small low-depth arithmetic or boolean circuits (e.g., in NC or even TC). In addition, they are the first low-depth PRF...

متن کامل

SILAR Sensitization as an Effective Method for Making Efficient Quantum Dot Sensitized Solar Cells

CdSe quantum dots were in situ deposited on various structures of TiO2 photoanode by successive ionic layer adsorption and reaction (SILAR). Various sensitized TiO2 structures were integrated as a photoanode in order to make quantum dot sensitized solar cells. High power conversion efficiency was obtained; 2.89 % (Voc=524 mV, Jsc=9.78 mA/cm2, FF=0.56) for the cells that sensitized by SILAR meth...

متن کامل

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 116 17  شماره 

صفحات  -

تاریخ انتشار 2016